
1

12/21/2006 RAMP Architecture, Language & Compiler 1

RAMP: Architecture, Language
& Compiler

http://ramp.eecs.berkeley.edu
Greg Gibeling
gdgib@berkeley.edu
1/19/2006

12/21/2006 RAMP Architecture, Language & Compiler 2

Outline

� Introduction to RAMP
� RAMP Architecture
� Target Model
� Host Model
� Tools & Toolflow
� RAMP Description Language
� Status & Future Work

12/21/2006 RAMP Architecture, Language & Compiler 3

Introduction to RAMP (1)

� FPGAs as a research platfom
� About ~16 CPUs can fit in Field Programmable Gate Array
� 1000-CPU system from ~ 60 FPGAs? (15 BEE2s)
� FPGA generations every 1.5 yrs; 2X CPUs, 2X clock rate

� HW research community does logic design (gateware)
� Create out-of-the-box, massively parallel system

� Runs full OS
� Allows OS, compiler and application developement

� Gateware: Processors, Caches, Coherency, Ethernet
Interfaces, Switches, Routers, …

� E.g., 1000 IBM Power cache-coherent supercomputer

12/21/2006 RAMP Architecture, Language & Compiler 4

Introduction to RAMP (2)

� A framework for system emulation
� Massively parallel (digital hardware) systems
� Orders magnitude performance enhancement
� Leverage existing designs
� Allow community development

� Share designs, validate experiments, etc…

� Flexible, cross platform designs
� Requires proper structure

� Support for automatic debugging
� Automatic glue logic/code generation

� Based on the “target model”

12/21/2006 RAMP Architecture, Language & Compiler 5

RAMP Architecture (1)

� Target
� The system being emulated

� Actually only a model of the system being emulated
� Can be a cycle accurate model

� Must conform to the RAMP target model
� Host

� The system doing the emulation
� May include multiple platforms

� Hardware – BEE2, XUP, CaLinx2
� Software – Java, C, C++

12/21/2006 RAMP Architecture, Language & Compiler 6

RAMP Architecture (2)

� Fundamental Model
� Message passing
� Distributed event simulator
� Message passing system generator

� Cross platform
� Shared development effort
� Easy to develop, debug and analyze

� Similar Formalisms
� Petri Nets
� Process Networks
� Research: Click, P2, Ptolmey, Metropolis, etc….

2

12/21/2006 RAMP Architecture, Language & Compiler 7

RAMP Target Model (1)

� Units communicate
over channels

� Units
� 10,000+ Gates

� Processor + L1
� Implemented in a “host”

language
� Channels

� Unidirectional
� Point-to-point
� FIFO semantics
� Delay Model

12/21/2006 RAMP Architecture, Language & Compiler 8

RAMP Target Model (2)

� Transaction style unit semantics
� Read 0/1 messages from each input
� Perform some action
� Write 0/1 messages to each output
� Units MUST be latency insensitive

12/21/2006 RAMP Architecture, Language & Compiler 9

Target Model - Units

� Inside edge
� Ports connect units

to channels
� FIFO signaling
� Hardware or

Software

� Target cycle control
� __Start
� __Done
� Allows for variable

timing, and timing
accurate simulation

12/21/2006 RAMP Architecture, Language & Compiler 10

Target Model – Channel (1)

� Channel semantics
� Arbitrary message size

� The messages are statically typed

� Ordered delivery
� Debugging through monitoring & injection
� Provides for cross-platform simulations

12/21/2006 RAMP Architecture, Language & Compiler 11

Target Model – Channel (2)

� Channel Params
� Only used for timing

accurate simulations
� Bitwidth
� Latency
� Buffering

� Fragments
� Smaller than messages
� Convey the simulation

time through idles

�
��
�
��
��

12/21/2006 RAMP Architecture, Language & Compiler 12

Target Model – Channel (3)

� Fragmentation
� Messages may be

larger than fragments
� Channels carry (per

target cycle):
� Zero or one fragments
� Between zero and

one messages
� Timing Model

� Zero fragments still
indicates passage of
time

� Implement outside of
the units

3

12/21/2006 RAMP Architecture, Language & Compiler 13

Target Model - Debugging

� Monitoring
� All communication is over channels

� Can be examined and controlled

� Real time can be paused or slowed down
� Target cycles are completely subjective

� Injection
� Makes developing test benches easy

� Simply inject a sequence of messages

� Cross platform comm is hidden by RDLC

12/21/2006 RAMP Architecture, Language & Compiler 14

Host Model

� �	

���

������
�

������������

������

���	�������

������
���	�������

� �	

����

��������

������������

������

���	�������

������
���	�������

������

���	�������

�� �	�!

����
���

������
���	�������

�� �	�!

�"�
���

������
���	�������

#$���% �#	���	��&�'���

#$���(

�)��*+�'�	�,$�-�

�����#

���	������

��.���
/0�1� #$���2��� $����	��$��

� �	

���1

������1�

�� �	�!

��� ���
�����3

���	�������

�����4

���	�������

������������

������

���	�����#�

�����"

���	�����

��.���
5�'&"'

� Cross platform
� Units implemented

in many languages
� Library units for I/O
� Links implement

channels

� Links
� Any communication
� Less defined

12/21/2006 RAMP Architecture, Language & Compiler 15

Host Model – Wrapper (1)

� Inside Edge
� Wrapper provides this interface to unit
� Clean, mostly free of implementation

� Hardware/software differences will be visible

� Outside Edge
� Implementation dependant
� Deals with physical links

� Generated by RDLC
� The wrapper
� All of the links
� Uses plugins for easy extensibility

12/21/2006 RAMP Architecture, Language & Compiler 16

Host Model – Wrapper (2)

����

� �	

��

'$����

'$����

660�	�� 66�$��

'$����

'$����

��,,��7�

'	*�����.�

5�-���

��,,��7�

'	*�����.�

5�-���

5�-���7�

��
	*�����.�

��,,��

5�-���7�

��
	*�����.�

��,,��

0�	���.��$���$�

�
$
�
��$
��.
�0
�	
��
�

������ ������

"����������

������������

������������

"����������

������������

12/21/2006 RAMP Architecture, Language & Compiler 17

Host Model - Link

� Typically Three Components
� Packing & Unpacking
� Timing Model
� Physical Transport

12/21/2006 RAMP Architecture, Language & Compiler 18

RDL (1)

� “RAMP Description Language”
� General message passing system

description language
� Compiler includes back-end

extensibility
� Links, other toolflows, external signals

� Does NOT include the functionality of
the units!

4

12/21/2006 RAMP Architecture, Language & Compiler 19

RDL (2)

� Hierarchical Namespaces
� Declarations can be external to a namespace
� Replaces “preprocessing”
� Allows for communal development

� RDL Target Constructs
� Channels, Messages and Port types
� Units include instances, inputs, outputs and connections

� RDL Host Constructs
� One platform per board or computer
� Platforms include an implementation language
� Hierarchy allows for, eg. A board with many FPGAs

� RDL Mappings
� Hierarchy allows for “compile one, run many”
� Allows specific units and channels to be precisely mapped

12/21/2006 RAMP Architecture, Language & Compiler 20

RDL Example (1)

� Up/Down Counter
� Push button input
� 4-bit LED output

� Utility as example
� Proof of concept
� Simple language

example
� Hands on demo

12/21/2006 RAMP Architecture, Language & Compiler 21

RDL Example (2)

unit {
input bit[1] UpDown;
output bit[32] Count;

} Counter;

12/21/2006 RAMP Architecture, Language & Compiler 22

RDL Example (3)

12/21/2006 RAMP Architecture, Language & Compiler 23

RDL Example (4)

unit {
instance IO::BooleanInput BooleanInput;
instance Counter Counter;
instance IO::Display7Seg Display7Seg;

channel fifopipe[1, 1, 1] InChannel
{ BooleanInput.Value -> Counter.UpDown };

channel fifopipe[32, 1, 1] OutChannel
{ Counter.Count -> Display7Seg.Value };

} CounterExample;

12/21/2006 RAMP Architecture, Language & Compiler 24

RDL Example (5)

channel … InChannel { BooleanInput.Value -> Counter.UpDown };

instance IO::BooleanInput BooleanInput(InChannel);
channel … InChannel;

instance IO::BooleanInput BooleanInput(Value(InChannel));
channel … InChannel;

5

12/21/2006 RAMP Architecture, Language & Compiler 25

RDL Example (6)

platform {
language "verilog";
default link “RegisterLink";
engine “XUPEngine”;

} XUP;

map {
platform XUP BasePlatformInst;
unit CounterExample BaseUnitInst;

} XUPCounter;

12/21/2006 RAMP Architecture, Language & Compiler 26

RDLC Toolflow (1)

� Development Steps
� Unit Implementation

� RDL unit descriptions
� RDLC generates shell code in a specific language

(Verilog, Java…)
� Researcher adds implementation code

� RDL target design
� Includes Mapping
� RDLC generates complete implementation code
� Includes all links, instantiates all unit shells

12/21/2006 RAMP Architecture, Language & Compiler 27

RDLC Toolflow (2)

�
$
�
��$
��.
�

0
�	
��
�

�
��
�
��
��

12/21/2006 RAMP Architecture, Language & Compiler 28

RDLC Toolflow (3)

� Help: rdlc -help
� Support

� Generates support files for a specific lang
� rdlc –support:“verilog” dummy.rdl outdir

� Shell
� Generates an inside edge shell
� rdlc –shell:“Counter Platforms::XUP”

CounterExample.RDL outdir
� Map

� Generates a complete emulation
� rdlc –map: “Maps::XUPCounter false”

CounterExample.RDL outdir

12/21/2006 RAMP Architecture, Language & Compiler 29

RDLC Back End (1)

� Language Families
� Hardware

� Verilog – Completely finished
� VHDL – Trivial addition

� Software
� Java in progress
� C/C++ planned

� RDL
� Your language here?

12/21/2006 RAMP Architecture, Language & Compiler 30

RDLC Back End (2)

� Back End Plugins
� Allow for toolflow integration

� Important for dealing with complex platforms without
requiring detailed knowledge of all the tools involved.

� XFlow & Impact
� ModelSim – Next Week

� Include
� Allows for including extra files (support modules)
� Unit implementations!

6

12/21/2006 RAMP Architecture, Language & Compiler 31

RDLC Back End (3)

� Configuration
� Back End XML Config File

� Add an element to add a language back end

� Uses Java reflection to load the code
� Language Specific

� Link plugins for each language
� Dependant on the language back end
� Hardware/Verilog is the model

12/21/2006 RAMP Architecture, Language & Compiler 32

State of the Project

� Working hardware implementation!
� Compiled RDL to Verilog
� Tested on a CaLinx2 and XUP Board
� Java and BEE2 should be done before Feb 1, 2006

� RDL & RDL Compiler
� RDL is stable

� Some advanced features are in flux
� Ready for use!

� Working compiler, written in java
� Powerful parser & output generators

� Easily extensible
� Software (Java) back end almost complete

12/21/2006 RAMP Architecture, Language & Compiler 33

Future Work

� RDL & RDLC Features
� Language Features

� Generated code, port arrays and compile time parameters
� Significant additions to back end

� Languages, platforms, links
� Debugging automation

� Documentation
� Architecture, Language & Compiler Technical Report
� Complete compiler internals documentation

� Automated Testing
� Regression tests for the compiler
� Automated test code generation for links and units

12/21/2006 RAMP Architecture, Language & Compiler 34

Website & Community

� http://ramp.eecs.berkeley.edu
� Planned Features

� Wiki – Certainly not JSPWiki
� CVS Repository
� Mailing list control and archives
� Communal project listings

� Ideas, Comments & Requests
� gdgib@berkeley.edu

12/21/2006 RAMP Architecture, Language & Compiler 35

CounterExample Lab

� The Basic Lab
� Code walkthrough
� Use the 3 RDLC commands
� Put the design on the XUP board

� The Advanced Lab
� Use the CaLinx2 board
� Running ModelSim
� Build your own
� Crash the compiler

