RAMP: Architecture, Language
| & Compiler

http://ramp.eecs.berkeley.edu
Greg Gibeling
gdgib@berkeley.edu
1/19/2006

12/21/2006 RAMP Architecture, Language & Compiler 1

Outline

» Introduction to RAMP

= RAMP Architecture

= Target Model

= Host Model

= Tools & Toolflow

= RAMP Description Language
» Status & Future Work

12/21/2006 RAMP Architecture, Language & Compiler

Introduction to RAMP (1)

= FPGAs as a research platfom
About ~16 CPUs can fit in Field Programmable Gate Array
1000-CPU system from ~ 60 FPGAs? (15 BEE2s)
FPGA generations every 1.5 yrs; 2X CPUs, 2X clock rate
= HW research community does logic design (gateware)
> Create out-of-the-box, massively parallel system
= Runs full OS
= Allows OS, compiler and application developement
> Gateware: Processors, Caches, Coherency, Ethernet
Interfaces, Switches, Routers, ...

> E.g., 1000 IBM Power cache-coherent supercomputer

12/21/2006 RAMP Architecture, Language & Gompiler 3

Introduction to RAMP (2)

= A framework for system emulation
> Massively parallel (digital hardware) systems
o Orders magnitude performance enhancement
o Leverage existing designs
o Allow community development
= Share designs, validate experiments, etc...
= Flexible, cross platform designs
o Requires proper structure
= Support for automatic debugging
= Automatic glue logic/code generation
o Based on the “target model”

12/21/2006 RAMP Architecture, Language & Gompiler

RAMP Architecture (1)

= Target

o The system being emulated
= Actually only a model of the system being emulated
= Can be a cycle accurate model

o Must conform to the RAMP target model
= Host
o The system doing the emulation

o May include multiple platforms
» Hardware — BEE2, XUP, CaLinx2
= Software — Java, C, C++

12/21/2006 RAMP Architecture, Language & Compiler 5

RAMP Architecture (2)

= Fundamental Model
o Message passing
> Distributed event simulator
o Message passing system generator
= Cross platform
= Shared development effort
= Easy to develop, debug and analyze
Similar Formalisms
= Petri Nets
= Process Networks
= Research: Click, P2, Ptolmey, Metropolis, etc....

o

12/21/2006 RAMP Architecture, Language & Compiler

RAMP Target Model (1)

= Units communicate
over channels

= Units
10,000+ Gates
= Processor + L1
Implemented in a “host”
language

" Channels
Unidirectional
Point-to-point
FIFO semantics
Delay Model

12/21/2006 RAMP Architecture, Language & Compiler 7

RAMP Target Model (2)

= Transaction style unit semantics

o Read 0/1 messages from each input
Perform some action
Write 0/1 messages to each output
Units MUST be latency insensitive

o O

O

12/21/2006 RAMP Architecture, Language & Compiler 8

Target Model - Units

" InS|de edge

Ports connect units 77.1_, ”””””

to channels)~ |

= FIFO signaling " _areno

= Hardware or N N IR A
Software TPona Unit _esesor ¢

Target cycle control _p=7 oo 1y

= _ Start . . Port 'CT

= _ Done) - i

= Allows for variable 7%:“;5’“”' |
timing, and timing N
accurate simulation

12/21/2006 RAMP Architecture, Language & Compiler 9

Target Model — Channel (1)

= Channel semantics
o Arbitrary message size
= The messages are statically typed
Ordered delivery
Debugging through monitoring & injection
Provides for cross-platform simulations

@)

@)

@)

12/21/2006 RAMP Architecture, Language & Compiler 10

Target Model — Channel (2)

= Channel Params
Only used for timing
accurate simulations

Bitwidth N -
Latency
Buffering
[Fragments i
{ Channel)
Smaller than messages ™ <

Convey the simulation
time through idles

12/21/2006 RAMP Architecture, Language & Compiler 1

Target Model — Channel (3)

L] Fragmentatlon
o Messages may be
larger than fragments
Channels carry (per
target cycle):
= Zero or one fragments
= Between zero and
one messages
T|m|ng Model
Zero fragments still
indicates passage of
time
Implement outside of
the units

12/21/2006 RAMP Architecture, Language & Compiler 12

[Target Model - Debugging]

= Monitoring
o All communication is over channels
= Can be examined and controlled
o Real time can be paused or slowed down
= Target cycles are completely subjective
= Injection
o Makes developing test benches easy
= Simply inject a sequence of messages
o Cross platform comm is hidden by RDLC

12/21/2006 RAMP Architecture, Language & Compiler 13

[Host Model]

Host a (Hardware/FPGA)

» Cross platform

Units implemented
= E—— = in many languages

| Woaper 1
| ey o Library units for |
o =e .bayu ts for I/O
- - o Links implement
channels
= Links
| e petorm)| |~ o Any communication

o Less defined

12/21/2006 RAMP Architecture, Language & Compiler 14

[Host Model — Wrapper (1)]

= Inside Edge
Wrapper provides this interface to unit
Clean, mostly free of implementation
= Hardware/software differences will be visible
= OQutside Edge
Implementation dependant
Deals with physical links
= Generated by RDLC
The wrapper
Al of the links
Uses plugins for easy extensibility

12/21/2006 RAMP Architecture, Language & Compiler 15

[Host Model — Wrapper (2)]

iming t H uffer,
‘Buffer . ming |
\ﬁpon
iming, suter
Unks Unpacing & Packng s | ko
Ser TPort B Port] Timing

Wrapper

12/21/2006 RAMP Architecture, Language & Compiler 16

[Host Model - Link]

= Typically Three Components
o Packing & Unpacking
o Timing Model
o Physical Transport

- Wrapper Wrapper

Message Register -~~~

RDLC Plugin
Facking Logic

Unpack Logic:

12/21/2006 RAMP Architecture, Language & Compiler 17

[RDL (1)]

= “RAMP Description Language”

= General message passing system
description language

» Compiler includes back-end
extensibility
o Links, other toolflows, external signals

= Does NOT include the functionality of
the units!

12/21/2006 RAMP Architecture, Language & Compiler 18

RDL (2)

= Hierarchical Namespaces
Declarations can be external to a namespace
Replaces “preprocessing”
Allows for communal development
= RDL Target Constructs
Channels, Messages and Port types
Units include instances, inputs, outputs and connections
= RDL Host Constructs
One platform per board or computer
Platforms include an implementation language
Hierarchy allows for, eg. A board with many FPGAs
= RDL Mappings
Hierarchy allows for “compile one, run many”
Allows specific units and channels to be precisely mapped

12/21/2006 RAMP Architecture, Language & Compiler 19

[RDL Example (1)

= Up/Down Counter
o Push button input
o 4-bit LED output
= Utility as example
o Proof of concept
o Simple language
example
o Hands on demo

1cJoJoNe

12/21/2006 RAMP Architecture, Language & Compiler 20

[RDL Example (2)

unit {
input Dbit[1] UpDown;
output bit[32] Count;

} Counter;

12/21/2006 RAMP Architecture, Language & Compiler 21

[RDL Example (3)

| {UpDown

Boolean b

12/21/2006 RAMP Architecture, Language & Gompiler 22

[RDL Example (4)

unit {
instance IO::BooleanInput BooleanInput;
instance Counter Counter;
instance IO0::Display7Seg Display7Seg;

channel fifopipe[l, 1, 1] InChannel
{ BooleanInput.Value -> Counter.UpDown };
channel fifopipe[32, 1, 1] OutChannel
{ Counter.Count -> Display7Seg.Value };
} CounterExample;

12/21/2006 RAMP Architecture, Language & Compiler 2

[RDL Example (5)

channel .. InChannel { BooleanInput.Value -> Counter.UpDown };

instance IO::BooleanInput BooleanInput (InChannel);
channel .. InChannel;

instance IO::BooleanInput BooleanInput (Value (InChannel));
channel .. InChannel;

12/21/2006 RAMP Architecture, Language & Compiler 2

[RDL Example (6)

platform {
language "verilog";
default link “RegisterLink";
engine “XUPEngine”;
} XUP;
map {
platform XUP BasePlatformInst;
unit CounterExample BaseUnitInst;
} XUPCounter;
12:21/2006 RAMP Architecture, Language & Compller 2

RDLC Toolflow (1)

= Development Steps
o Unit Implementation
= RDL unit descriptions

= RDLC generates shell code in a specific language
(Verilog, Java...)

= Researcher adds implementation code
o RDL target design
= Includes Mapping
= RDLC generates complete implementation code
= Includes all links, instantiates all unit shells

12/21/2006 RAMP Architecture, Language & Compiler 2

[RDLC Toolflow (2)

ot Unit shell, ready for implementation
Unstructured messages ~Veriog, Java, etc...
functionality in RDL gﬁ

A GORE S

BT, Q=

+Support for :
+Automatic cross platform im plementation Standard Compler

«RDL Hierarchical Netlist
model

S

12/21/2006 RAMP Architecture, Language & Gompiler 27

RDLC Toolflow (3)

= Help: rdic -help
= Support
> Generates support files for a specific lang
> rdic —support:“verilog” dummy.rdl outdir
= Shell
Generates an inside edge shell

rdic —shell:“Counter Platforms::XUP”
CounterExample.RDL outdir

= Map
> Generates a complete emulation

rdic —maéx “Maps::XUPCounter false”
CounterExample.RDL outdir

12/21/2006 RAMP Architecture, Language & Gompiler 28

RDLC Back End (1)

= Language Families
o Hardware
= Verilog — Completely finished
= VHDL — Trivial addition
o Software
= Java in progress
u C/C++ planned

o RDL
o Your language here?
12/21/2006 RAMP Architecture, Language & Compiler 29

RDLC Back End (2)

= Back End Plugins

o Allow for toolflow integration
= Important for dealing with complex platforms without
requiring detailed knowledge of all the tools involved.
= XFlow & Impact
= ModelSim — Next Week
o Include
= Allows for including extra files (support modules)
= Unit implementations!

12/21/2006 RAMP Architecture, Language & Compiler 30

[RDLC Back End (3)]

= Configuration
o Back End XML Config File
= Add an element to add a language back end
o Uses Java reflection to load the code
o Language Specific
= Link plugins for each language
= Dependant on the language back end
= Hardware/Verilog is the model

12/21/2006 RAMP Architecture, Language & Compiler

[State of the Project]

= Working hardware implementation!
Compiled RDL to Verilog
Tested on a CalLinx2 and XUP Board
> Java and BEE2 should be done before Feb 1, 2006

= RDL & RDL Compiler
RDL is stable
= Some advanced features are in flux
= Ready for use!
> Working compiler, written in java
Powerful parser & output generators
= Easily extensible
= Software (Java) back end almost complete

12/21/2006 RAMP Architecture, Language & Compiler a2

[Future Work]

= RDL & RDLC Features
Language Features
= Generated code, port arrays and compile time parameters
> Significant additions to back end
= Languages, platforms, links
= Debugging automation
= Documentation
> Architecture, Language & Compiler Technical Report
> Complete compiler internals documentation
= Automated Testing
Regression tests for the compiler
Automated test code generation for links and units

12/21/2006 RAMP Architecture, Language & Gompiler

[Website & Community]

= http://ramp.eecs.berkeley.edu
= Planned Features
o Wiki — Certainly not JSPWiki
o CVS Repository
o Mailing list control and archives
o Communal project listings
= Ildeas, Comments & Requests
o gdgib@berkeley.edu

12/21/2006 RAMP Architecture, Language & Gompiler 3

[CounterExampIe Lab]

= The Basic Lab

o Code walkthrough

o Use the 3 RDLC commands

o Put the design on the XUP board
= The Advanced Lab

o Use the CaLinx2 board

o Running ModelSim

o Build your own

o Crash the compiler

12/21/2006 RAMP Architecture, Language & Compiler

